VaninVM/trustgraph.go
2016-03-01 15:38:55 -05:00

142 lines
3.8 KiB
Go

// Package trustGraph is based on EigenTrust
// http://nlp.stanford.edu/pubs/eigentrust.pdf
package trustGraph
import (
"errors"
)
// Group represents a group of peers. Peers need to be given unique, int IDs.
// Certainty represents the threshold of RMS change at which the algorithm will
// escape. Max is the maximum number of loos the algorithm will perform before
// escaping (regardless of certainty). These default to 0.001 and 200
// respectivly and generally don't need to be changed.
type Group struct {
trustGrid map[int]map[int]float32
initialTrust map[int]float32
Certainty float32
Max int
Alpha float32
}
// NewGroup is the constructor for Group.
func NewGroup() Group {
return Group{
trustGrid: map[int]map[int]float32{},
initialTrust: map[int]float32{},
Certainty: 0.001,
Max: 200,
Alpha: 0.95,
}
}
// Add will add or override a trust relationship. The first arg is the peer who
// is extending trust, the second arg is the peer being trusted (by the peer
// in the first arg). The 3rd arg is the amount of trust, which must be
func (g Group) Add(truster, trusted int, amount float32) (err error) {
err = float32InRange(amount)
if err == nil {
a, ok := g.trustGrid[truster]
if !ok {
a = map[int]float32{}
g.trustGrid[truster] = a
}
a[trusted] = amount
}
return
}
// InitialTrust sets the vaulues used to seed the calculation as well as the
// corrective factor used by Alpha.
func (g Group) InitialTrust(trusted int, amount float32) (err error) {
err = float32InRange(amount)
if err == nil {
g.initialTrust[trusted] = amount
}
return
}
// float32InRange is a helper to check that a value is 0.0 <= x <= 1.0
func float32InRange(x float32) error {
if x < 0 {
return errors.New("Trust amount cannot be less than 0")
}
if x > 1 {
return errors.New("Trust amount cannot be greater than 1")
}
return nil
}
// Compute will approximate the trustworthyness of each peer from the
// information known of how much peers trust eachother.
// It wil loop, upto g.Max times or until the average difference between
// iterations is less than g.Certainty.
func (g Group) Compute() map[int]float32 {
if len(g.initialTrust) == 0 {
return map[int]float32{}
}
t0 := g.initialTrust //trust map for previous iteration
for i := 0; i < g.Max; i++ {
t1 := *g.computeIteration(&t0) // trust map for current iteration
d := avgD(&t0, &t1)
t0 = t1
if d < g.Certainty {
break
}
}
return t0
}
// computeIteration is broken out of Compute to aid comprehension. It is the
// inner loop of Compute. It loops over every value in t (the current trust map)
// and looks up how much trust that peer extends to every other peer. The
// product of the direct trust and indirect trust
func (g Group) computeIteration(t0 *map[int]float32) *map[int]float32 {
t1 := map[int]float32{}
for truster, directTrust := range *t0 {
for trusted, indirectTrust := range g.trustGrid[truster] {
if trusted != truster {
t1[trusted] += directTrust * indirectTrust
}
}
}
// normalize the trust values
// in the EigenTrust paper, this was not done every step, but I prefer to
// Not doing it means the diff (d) needs to be normalized in
// proportion to the values (because they increase with every iteration)
highestTrust := float32(0)
for _, v := range t1 {
if v > highestTrust {
highestTrust = v
}
}
//Todo handle highestTrust == 0
for i, v := range t1 {
t1[i] = (v/highestTrust)*g.Alpha + (1-g.Alpha)*g.initialTrust[i]
}
return &t1
}
// abs is helper to take abs of float32
func abs(x float32) float32 {
if x < 0 {
return -x
}
return x
}
// avgD is helper to compare 2 maps of float32s and return the average
// difference between them
func avgD(t0, t1 *map[int]float32) float32 {
d := float32(0)
for i, v := range *t1 {
d += abs(v - (*t0)[i])
}
d = d / float32(len(*t0))
return d
}