Initial commit

This commit is contained in:
Adam Colton 2016-03-01 15:38:55 -05:00
commit c309d6158a
3 changed files with 263 additions and 0 deletions

8
readme.md Normal file
View file

@ -0,0 +1,8 @@
## TrustGraph
An implementation of the basic EigenTrust algorithm (http://nlp.stanford.edu/pubs/eigentrust.pdf).
The algorithm is meant to find the trustworthiness of peers in a distributed system. A (potentially sparse) matrix is populated with values representing how much peers trust each other. A map is also populated with how much trust is extended by default to a sub-set of peers. From that starting point, the algorithm converges on the global trustworthiness of each peer.
### To-Do
This is a first pass. It does not yet implement distributed EigenTrust. There is also some room to improve error handling.

142
trustgraph.go Normal file
View file

@ -0,0 +1,142 @@
// Package trustGraph is based on EigenTrust
// http://nlp.stanford.edu/pubs/eigentrust.pdf
package trustGraph
import (
"errors"
)
// Group represents a group of peers. Peers need to be given unique, int IDs.
// Certainty represents the threshold of RMS change at which the algorithm will
// escape. Max is the maximum number of loos the algorithm will perform before
// escaping (regardless of certainty). These default to 0.001 and 200
// respectivly and generally don't need to be changed.
type Group struct {
trustGrid map[int]map[int]float32
initialTrust map[int]float32
Certainty float32
Max int
Alpha float32
}
// NewGroup is the constructor for Group.
func NewGroup() Group {
return Group{
trustGrid: map[int]map[int]float32{},
initialTrust: map[int]float32{},
Certainty: 0.001,
Max: 200,
Alpha: 0.95,
}
}
// Add will add or override a trust relationship. The first arg is the peer who
// is extending trust, the second arg is the peer being trusted (by the peer
// in the first arg). The 3rd arg is the amount of trust, which must be
func (g Group) Add(truster, trusted int, amount float32) (err error) {
err = float32InRange(amount)
if err == nil {
a, ok := g.trustGrid[truster]
if !ok {
a = map[int]float32{}
g.trustGrid[truster] = a
}
a[trusted] = amount
}
return
}
// InitialTrust sets the vaulues used to seed the calculation as well as the
// corrective factor used by Alpha.
func (g Group) InitialTrust(trusted int, amount float32) (err error) {
err = float32InRange(amount)
if err == nil {
g.initialTrust[trusted] = amount
}
return
}
// float32InRange is a helper to check that a value is 0.0 <= x <= 1.0
func float32InRange(x float32) error {
if x < 0 {
return errors.New("Trust amount cannot be less than 0")
}
if x > 1 {
return errors.New("Trust amount cannot be greater than 1")
}
return nil
}
// Compute will approximate the trustworthyness of each peer from the
// information known of how much peers trust eachother.
// It wil loop, upto g.Max times or until the average difference between
// iterations is less than g.Certainty.
func (g Group) Compute() map[int]float32 {
if len(g.initialTrust) == 0 {
return map[int]float32{}
}
t0 := g.initialTrust //trust map for previous iteration
for i := 0; i < g.Max; i++ {
t1 := *g.computeIteration(&t0) // trust map for current iteration
d := avgD(&t0, &t1)
t0 = t1
if d < g.Certainty {
break
}
}
return t0
}
// computeIteration is broken out of Compute to aid comprehension. It is the
// inner loop of Compute. It loops over every value in t (the current trust map)
// and looks up how much trust that peer extends to every other peer. The
// product of the direct trust and indirect trust
func (g Group) computeIteration(t0 *map[int]float32) *map[int]float32 {
t1 := map[int]float32{}
for truster, directTrust := range *t0 {
for trusted, indirectTrust := range g.trustGrid[truster] {
if trusted != truster {
t1[trusted] += directTrust * indirectTrust
}
}
}
// normalize the trust values
// in the EigenTrust paper, this was not done every step, but I prefer to
// Not doing it means the diff (d) needs to be normalized in
// proportion to the values (because they increase with every iteration)
highestTrust := float32(0)
for _, v := range t1 {
if v > highestTrust {
highestTrust = v
}
}
//Todo handle highestTrust == 0
for i, v := range t1 {
t1[i] = (v/highestTrust)*g.Alpha + (1-g.Alpha)*g.initialTrust[i]
}
return &t1
}
// abs is helper to take abs of float32
func abs(x float32) float32 {
if x < 0 {
return -x
}
return x
}
// avgD is helper to compare 2 maps of float32s and return the average
// difference between them
func avgD(t0, t1 *map[int]float32) float32 {
d := float32(0)
for i, v := range *t1 {
d += abs(v - (*t0)[i])
}
d = d / float32(len(*t0))
return d
}

113
trustgraph_test.go Normal file
View file

@ -0,0 +1,113 @@
package trustGraph
import (
"math"
"math/rand"
"testing"
"time"
)
func TestBasic(t *testing.T) {
g := NewGroup()
g.Add(1, 2, 1)
g.Add(1, 3, .5)
g.Add(2, 1, 1)
g.Add(2, 3, .5)
g.Add(3, 1, 1)
g.Add(3, 2, 1)
g.InitialTrust(1, 1)
out := g.Compute()
if out[1] < 0.975 {
t.Error("Trust in node 1 should be closer to 1.00")
}
if out[2] < 0.93 {
t.Error("Trust in node 2 should be closer to 1.00")
}
if out[3] < 0.4 || out[3] > 0.6 {
t.Error("Trust in node 3 should be closer to 0.50")
}
}
func TestRand(t *testing.T) {
peers := 200
rand.Seed(time.Now().UTC().UnixNano())
g := NewGroup()
//randomly set actual trust values for peers
actualTrust := make([]float32, peers)
for i := 0; i < peers; i++ {
actualTrust[i] = rand.Float32()
}
// peer0 is set to and granted 100% trust
actualTrust[0] = 1
g.InitialTrust(0, 1)
// set 30% of trust values to +/- 10% of actual trust
for i := 0; i < peers; i++ {
for j := 0; j < peers; j++ {
if rand.Float32() > .7 {
g.Add(i, j, randNorm(actualTrust[j]))
}
}
}
// compute trust
out := g.Compute()
// find RMS error
e := float32(0)
for i := 0; i < peers; i++ {
x := actualTrust[i] - out[i]
e += x * x
}
e = float32(math.Sqrt(float64(e / float32(peers))))
if e > .2 {
t.Error("RMS Error should be less than 20% for a 30% full trust grid of 200 nodes")
}
}
// randNorm takes a float and returns a value within +/- 10%,
// without going over 1
func randNorm(x float32) float32 {
r := rand.Float32()*.2 + .9
x *= r
if x > 1 {
return 1
}
return x
}
func TestRangeError(t *testing.T) {
g := NewGroup()
err := g.Add(1, 2, 1.1)
if err.Error() != "Trust amount cannot be greater than 1" {
t.Error("Expected error")
}
err = g.Add(1, 2, -1)
if err.Error() != "Trust amount cannot be less than 0" {
t.Error("Expected error less than 0 error")
}
err = g.Add(1, 2, 1)
if err != nil {
t.Error("Did not expected error")
}
err = g.Add(1, 2, 0)
if err != nil {
t.Error("Did not expected error")
}
err = g.Add(1, 2, 0.5)
if err != nil {
t.Error("Did not expected error")
}
}